Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice.

نویسندگان

  • Michael J Bround
  • Parisa Asghari
  • Rich B Wambolt
  • Lubos Bohunek
  • Claire Smits
  • Marjolaine Philit
  • Timothy J Kieffer
  • Edward G Lakatta
  • Kenneth R Boheler
  • Edwin D W Moore
  • Michael F Allard
  • James D Johnson
چکیده

AIMS The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death. Embryonic stem-cell derived cardiomyocytes lacking Ryr2 display slower beating rates, but no supporting in vivo evidence has been presented. The aim of the present study was to test the hypothesis that RYR2 loss-of-function would reduce heart rate and rhythmicity in vivo. METHODS AND RESULTS We generated inducible, tissue-specific Ryr2 knockout mice with acute ∼50% loss of RYR2 protein in the heart but not in other tissues. Echocardiography, working heart perfusion, and in vivo ECG telemetry demonstrated that deletion of Ryr2 was sufficient to cause bradycardia and arrhythmia. Our results also show that cardiac Ryr2 knockout mice exhibit functional and structural hallmarks of heart failure, including sudden cardiac death. CONCLUSION These results illustrate that the RYR2 channel plays an essential role in pacing heart rate. Moreover, we find that RYR2 loss-of-function can lead to fatal arrhythmias typically associated with gain-of-function mutations. Given that RYR2 levels can be reduced in pathological conditions, including heart failure and diabetic cardiomyopathy, we predict that RYR2 loss contributes to disease-associated bradycardia, arrhythmia, and sudden death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amelioration of Pentylenetetrazole-Induced Seizures by Modulators of Sigma, N-Methyl-D-Aspartate, and Ryanodine Receptors in Mice

Background: Sigma receptors, N-methyl-D-aspartate (NMDA) antagonist, and modulators of intracellular calcium may be useful for seizure control. Therefore, we aimed to evaluate the antiepileptic effects of opipramol, a sigma receptor agonist, against pentylenetetrazole (PTZ)-induced seizures in mice and assess ketamine and caffeine interaction with the antiepileptic effects of opipramol.Methods:...

متن کامل

Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.

During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine recept...

متن کامل

Temporally controlled overexpression of cardiac-specific PI3K induces enhanced myocardial contractility—a new transgenic model

Yano N, Tseng A, Zhao TC, Robbins J, Padbury JF, Tseng YT. Temporally controlled overexpression of cardiac-specific PI3K induces enhanced myocardial contractility—a new transgenic model. Am J Physiol Heart Circ Physiol 295: H1690–H1694, 2008. First published August 22, 2008; doi:10.1152/ajpheart.00531.2008.—The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates multiple cellular p...

متن کامل

Temporally controlled overexpression of cardiac-specific PI3Kalpha induces enhanced myocardial contractility--a new transgenic model.

The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates multiple cellular processes including cell survival/apoptosis and growth. In the cardiac context, PI3Kalpha plays important roles in cardiac growth. We have shown that cardiac PI3K activity is highly regulated during development, with the highest levels found during the fetal-neonatal transition period and the lowest levels in...

متن کامل

Effects of chronic psychosocial stress on cardiac autonomic responsiveness and myocardial structure in mice.

Repeated single exposures to social stressors induce robust shifts of cardiac sympathovagal balance toward sympathetic dominance both during and after each agonistic interaction. However, little evidence is available regarding possible persistent pathophysiological changes due to chronic social challenge. In this study, male CD-1 mice (n = 14) were implanted with a radiotelemetry system for ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2012